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Plan for today

1. Arithmetic and algebraic geometry


2. Algebraic curves


3. Geometry of surfaces


4. Arithmetic of surfaces


5. Elliptic fibrations



Arithmetic and algebraic

geometry

Algebraic Geometry: set of solutions of systems of 
polynomial equations (over an algebraically closed 
field, eg. ) correspond to algebraic varieties. 


Arithmetic/Diophantine Geometry: solutions over 
arbitrary fields or rings (eg. rationals, integers).


Notation:

       the solutions over  ( points)                                                         


For simplicity in the rest of the talk: 

ℂ

X(k) k k−

k = ℚ



Fermat’s last theorem (Taylor-Wiles, 1995): 

If  is such that  , for some 
integer , then .


Geometry:

  is a (plane, projective) algebraic 
curve of genus


 


 of holes in the associated Riemann surface .

(x, y, z) ∈ ℤ3 xn + yn = zn

n ≥ 3 xyz = 0

Cn : xn + yn = zn

g =
(n − 1)(n − 2)

2
≥ 1

# Cn(ℂ)

A prominent example



Fermat’s last theorem redux:

Let . The projective plane curve 

 has no - points , 
with .

Geometry:

  is a (plane, projective) algebraic 
curve of genus


 


 of holes in the associated Riemann surface 


n ≥ 3
Cn : xn + yn = zn ℚ (x : y : z) ∈ ℙ2(ℚ)

x ⋅ y ⋅ z ≠ 0

Cn : xn + yn = zn

g =
(n − 1)(n − 2)

2
≥ 1

# Cn(ℂ)

A prominent example



Geometry determines 
arithmetic (of curves)
Genus/

rational points

finite

How/who? Projection 
from a point

Euler

(1750)

Faltings 
(1983)

Riemann 
surface


Example

ℙ1(k)
(X(ℚ) ≠ ∅)

X(ℚ) =

x2 + y2 = z2 x3 + y3 = z3 x4 + y4 = z4

X(ℂ)

g = 0 g = 1 g > 1

Has a GROUP 
structure



Geometry determines 
arithmetic (of curves)
Genus/

rational points

finite

How/who? Projection 
from a point

Mordell 

(1922)

Faltings 
(1983)

Riemann 
surface


Example

T ⊕ ℤr

(X(ℚ) ≠ ∅)
X(ℚ) =

x2 + y2 = z2 x3 + y3 = z3 x4 + y4 = z4

X(ℂ)

g = 0 g = 1 g > 1

ℙ1(k)



What about surfaces?



For example, the set of 
solutions of

.xn + yn = zn + wn



Surfaces
Some guiding questions
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Surfaces
Some guiding questions

X(k)

EmptyNon-empty

Infinite Finite Why? obstructions

(Zariski) 
Dense

Concentrated 
in a curve

Does geometry determine their arithmetic?



Let  be the canonical divisor of . 


If  does not vanish for all positive integers , then 
there is a unique integer  with  such that:


 exists and is non-zero.


Definition: The integer  is called the Kodaira dimension of .


We set  if  vanishes for all .

KX X

h0(X, nKX) n
κ = κ(X) 0 ≤ κ ≤ d

lim sup
n→∞

h0(X, nKX)
nκ

κ(X) X

κ(X) = − ∞ h0(X, nKX) n

The Kodaira dimension



, if 


,       if 


,       if 

κ(C) = − ∞ g(C) = 0

κ(C) = 0 g(C) = 1

κ(C) = 1 g(C) > 1

The Kodaira dimension of a curve



Geometry determines 
arithmetic (of curves)

Kodaira dim/
rational points

finite

How/who? Projection 
from a point

Mordell 

(1922)

Faltings 
(1983)

Riemann 
surface


Example

T ⊕ ℤrℙ1(k)
(X(ℚ) ≠ ∅)

X(ℚ) =

x2 + y2 = z2 x3 + y3 = z3 x4 + y4 = z4

X(ℂ)

κ = − ∞ κ = 0 κ = 1



Classification of algebraic surfaces 
(Enriques and Kodaira): divide an conquer

Kodaira 
dimension Surfaces

0 K3, Enriques, Bielliptic, 
Abelian

1 Honest elliptic

2 General type

C × ℙ1Rational or−∞
or



Classification of algebraic surfaces 
(Enriques and Kodaira): divide an conquer

Kodaira 
dimension Surfaces A Fermat type 

equation
There is k for 
which X(k) 
dense

X(k) not 
dense for any 
k

or many 
examples

0
K3, Enriques, 

Bielliptic, 
Abelian

many 
examples no example

1 Honest elliptic many 
examples

2 General type no example many 
examples

Table by Lucia Caporaso

C × ℙ1

Rational or
C × ℙ1, g(C) > 1

E × C

g(E) = 1, g(C) > 1

−∞
x2 + y2 + z2 = w2

x3 + y3 + z3 = w3

x4 + y4 = z4 + w4

xn + yn = zn + wn

n ≥ 5



Density of points:

state of the art

k−

• : Rational surfaces admit minimal models that are 
either del Pezzo surfaces or conic bundles. A lot is known (S. 
-Testa- Várilly-Alvarado, S. - van Luijk) but there are still open 
cases!


• : Campana’s conjecture: points are potentially 
dense. Known for many surfaces.


• : Admit a genus one fibration. If there is a non-torsion 
section then points form a dense set.


• : Bombieri-Lang conjecture: points are not dense 
for any  finite extension.

κ = − ∞ k−

κ = 0 k−

κ = 1
k−

κ = 2 k′￼−
k′￼/k



Density of points:

Techniques

k−

Goal: generate new points from existing ones.


How?




Density of points:

Techniques

k−

Goal: generate new points from existing ones.


How?


• Apply automorphisms defined over the ground field (e.g. 
arising from the group law on an elliptic curve);


OR/AND


• Look for subvarieties that are expected to have many 
rational points.



Elliptic fibrations

   

Given a surface , an elliptic 
fibration on  is a surjective 
morphism to a curve, 

, such that:

X
X

π : X → B

curves to understand surfaces

• almost all fibers are smooth curves of genus 1

• there are singular fibers

• there is a section (  fibres are elliptic curves!)⇒



Elliptic fibrations

   

Given a surface , an elliptic 
fibration on  is a surjective 
morphism to a curve, 

, such that:

X
X

π : X → B

curves to understand surfaces

• almost all fibers are smooth curves of genus 1

• there are singular fibers

• there is a section (  fibres are elliptic curves!)⇒

B

↓π
X



Examples

a) A family of plane cubics: .


b) The surface described by the equations:


.

y2 = x3 + tx + t

x4 + y4 = z4 + w4

X → ℙ1
t



Examples

a) A family of plane cubics: .


b) The surface described by the equations:




.

y2 = x3 + tx + t

z2 + y2 = t(x2 − w2)

t(z2 − y2) = x2 + w2

X → ℙ1
t



Why do we care?
A. Density of rational points (S.- van Luijk, Bogomolov-Tschinkel)


B. Unirationality of conic bundles (Kóllar-Mella)


C. Useful to find elliptic curves with high rank (Elkies)


D. Shioda-Tate formula (helps understand geometry)


E. Sphere packing (Elkies, Shioda)


F. Error-correcting codes (S. - Várilly-Alvarado -  Voloch)


                                And more….




Let  be a number field and  an elliptic surface over .
k π : X → ℙ1 k

Elliptic fibrations and rational points

B

↓π
X

σ(B) = 𝒪

η = Spec(k(B))



Let  be a number field and  an elliptic surface over .
k π : X → ℙ1 k

Elliptic fibrations and rational points

B

↓π
X

η = Spec(k(B))

σ(B) = 𝒪Mordell-Weil: For ,

 

t ∈ B(k)
π−1(t)(k) ≅ ℤrt ⊕ Torst

Lang-Néron: For ,

 

η
π−1(η)(k(B)) ≅ ℤr ⊕ Tors

Silverman’s specialization: 
 for all but finitely many 

.
rt ≥ r
t ∈ B(k)

Conclusion 
If  then  is Zariski dense in .r > 0 X(k) X



Let  be a number field and  an elliptic surface over . 
Let . 


Theorem:   is Zariski dense in     .


Sketch of the proof:


( ) Mérel’s result on the uniform boundedness of torsion.


( ) If  contained in a finite union of curves then, in particular, it 
is contained in a finite union of multisections and fibers. Each 
multisection intersects a given fiber in a finite number of points. 
Hence all but finitely many fibers would have rank .

k π : X → ℙ1 k
ℱ(k) := {t ∈ ℙ1(k); rt > 0}

X(k) X ⟺ #ℱ = ∞

⇒

⇐ X(k)

0

Elliptic fibrations and rational points



How do we show that  
is infinite?

ℱ(k)



Let  be a number field and  an elliptic surface over .
k π : X → ℙ1 k

Elliptic fibrations and rational points

B

↓π
X

In orange: a multisection Spec(k(B))

σ(B) = 𝒪Method A (e.g. 
Bogomolov-Tschinkel, 
S.-vanLuijk): Find a non-
torsion multisection  
s.t. .

C/k
#C(k) = ∞

Method B (Rohrlich): 
Variation of root number.

Subject to BSD and Parity 
conjecture



Thank you!

Danke!


