Arithmetic and geometry of algebraic surfaces: the place of elliptic fibrations

Cecília Salgado Rijksuniversiteit Groningen September 19th, 2023

Plan for today

- 1. Arithmetic and algebraic geometry
- 2. Algebraic curves
- 3. Geometry of surfaces
- 4. Arithmetic of surfaces
- 5. Elliptic fibrations

Arithmetic and algebraic geometry

Algebraic Geometry: set of solutions of systems of polynomial equations (over an algebraically closed field, eg. \mathbb{C}) correspond to algebraic varieties.

Arithmetic/Diophantine Geometry: solutions over arbitrary fields or rings (eg. rationals, integers).

Notation:

X(k) the solutions over k (k-points)

For simplicity in the rest of the talk: $k = \mathbb{Q}$

A prominent example

Fermat's last theorem (Taylor-Wiles, 1995):

If $(x, y, z) \in \mathbb{Z}^3$ is such that $x^n + y^n = z^n$, for some integer $n \ge 3$, then xyz = 0.

Geometry:

 $C_n: x^n + y^n = z^n$ is a (plane, projective) algebraic curve of genus

$$g = \frac{(n-1)(n-2)}{2} \ge 1$$

of holes in the associated Riemann surface $C_n(\mathbb{C})$.

A prominent example

Fermat's last theorem redux:

Let $n \ge 3$. The projective plane curve $C_n : x^n + y^n = z^n$ has no \mathbb{Q} - points $(x : y : z) \in \mathbb{P}^2(\mathbb{Q})$, with $x \cdot y \cdot z \neq 0$.

Geometry:

 $C_n: x^n + y^n = z^n$ is a (plane, projective) algebraic curve of genus

$$g = \frac{(n-1)(n-2)}{2} \ge 1$$

of holes in the associated Riemann surface $C_n(\mathbb{C})$

Geometry determines arithmetic (of curves)

Genus/ rational points	g = 0	<i>g</i> = 1	<i>g</i> > 1
$X(\mathbb{Q}) = (X(\mathbb{Q}) \neq \emptyset)$	$\mathbb{P}^1(k)$	Has a GROUP structure	finite
How/who?	Projection Euler from a point (1750)		Faltings (1983)
Riemannsurface $X(\mathbb{C})$			8
Example	$x^2 + y^2 = z^2$	$x^3 + y^3 = z^3$	$x^4 + y^4 = z^4$

Geometry determines arithmetic (of curves)

Genus/ rational points	<i>g</i> = 0	<i>g</i> = 1	<i>g</i> > 1
$X(\mathbb{Q}) = (X(\mathbb{Q}) \neq \emptyset)$	$\mathbb{P}^1(k)$	$T \oplus \mathbb{Z}^r$	finite
How/who?	Projection from a point	Mordell (1922)	Faltings (1983)
Riemannsurface $X(\mathbb{C})$			8
Example	$x^2 + y^2 = z^2$	$x^3 + y^3 = z^3$	$x^4 + y^4 = z^4$

What about surfaces?

For example, the set of solutions of $x^{n} + y^{n} = z^{n} + w^{n}$.

X(k)

Does geometry determine their arithmetic?

Does geometry determine their arithmetic?

The Kodaira dimension

Let K_X be the canonical divisor of X.

If $h^0(X, nK_X)$ does not vanish for all positive integers *n*, then there is a unique integer $\kappa = \kappa(X)$ with $0 \le \kappa \le d$ such that:

$$\limsup_{n \to \infty} \frac{h^0(X, nK_X)}{n^{\kappa}} \text{ exists and is non-zero.}$$

Definition: The integer $\kappa(X)$ is called the *Kodaira dimension* of X.

We set $\kappa(X) = -\infty$ if $h^0(X, nK_X)$ vanishes for all n.

The Kodaira dimension of a curve

$\kappa(C) = -\infty, \text{ if } g(C) = 0$ $\kappa(C) = 0, \quad \text{ if } g(C) = 1$ $\kappa(C) = 1, \quad \text{ if } g(C) > 1$

Geometry determines arithmetic (of curves)

Kodaira dim/ rational points	$\kappa = -\infty$	$\kappa = 0$	$\kappa = 1$
$X(\mathbb{Q}) = X(\mathbb{Q}) \neq \emptyset$	$\mathbb{P}^1(k)$	$T \oplus \mathbb{Z}^r$	finite
How/who?	Projection from a point	Mordell (1922)	Faltings (1983)
Riemannsurface $X(\mathbb{C})$			8
Example	$x^2 + y^2 = z^2$	$x^3 + y^3 = z^3$	$x^4 + y^4 = z^4$

Classification of algebraic surfaces (Enriques and Kodaira): divide an conquer

Kodaira dimension	Surfaces	
$-\infty$	Rational or $C \times \mathbb{P}^1$	or V
0	K3, Enriques, Bielliptic, Abelian	
1	Honest elliptic	
2	General type	

Classification of algebraic surfaces (Enriques and Kodaira): divide an conquer

Kodaira dimension	Surfaces	A Fermat type equation	There is k for which X(k) dense	X(k) not dense for any k
$-\infty$	Rational or $C \times \mathbb{P}^1$	$x^{2} + y^{2} + z^{2} = w^{2}$ or $x^{3} + y^{3} + z^{3} = w^{3}$	many	$C\times \mathbb{P}^1, g(C)>1$
0	K3, Enriques, Bielliptic, Abelian	$x^4 + y^4 = z^4 + w^4$	many examples	no example
1	Honest elliptic		many examples	$E \times C$ $g(E) = 1, g(C) > 1$
2	General type	$x^{n} + y^{n} = z^{n} + w^{n}$ $n \ge 5$	no example	many examples

Table by Lucia Caporaso

Density of k—points: state of the art

- κ = -∞: Rational surfaces admit k-minimal models that are either del Pezzo surfaces or conic bundles. A lot is known (S. -Testa- Várilly-Alvarado, S. - van Luijk) but there are still open cases!
- $\kappa = 0$: Campana's conjecture: k—points are potentially dense. Known for many surfaces.
- $\kappa = 1$: Admit a genus one fibration. If there is a non-torsion section then k-points form a dense set.
- $\kappa = 2$: Bombieri-Lang conjecture: k'-points are not dense for any k'/k finite extension.

Density of k-points: Techniques

Goal: generate new points from existing ones.

How?

Density of k—points: Techniques

Goal: generate new points from existing ones.

How?

 Apply automorphisms defined over the ground field (e.g. arising from the group law on an elliptic curve);

OR/AND

 Look for subvarieties that are expected to have many rational points.

Elliptic fibrations

curves to understand surfaces

Given a surface *X*, an elliptic fibration on *X* is a surjective morphism to a curve, $\pi: X \to B$, such that:

- almost all fibers are smooth curves of genus 1
- there are singular fibers
- there is a section (\Rightarrow fibres are elliptic curves!)

Elliptic fibrations curves to understand surfaces

Given a surface X, an elliptic fibration on X is a surjective morphism to a curve, $\pi: X \to B$, such that:

- almost all fibers are smooth curves of genus 1
- there are singular fibers
- there is a section (\Rightarrow fibres are elliptic curves!)

Examples

a) A family of plane cubics: $y^2 = x^3 + tx + t$.

 $X \to \mathbb{P}^1_t$

b) The surface described by the equations:

$$x^4 + y^4 = z^4 + w^4.$$

Examples

a) A family of plane cubics: $y^2 = x^3 + tx + t$.

 $X \to \mathbb{P}^1_t$

b) The surface described by the equations:

$$z^{2} + y^{2} = t(x^{2} - w^{2})$$
$$t(z^{2} - y^{2}) = x^{2} + w^{2}.$$

Why do we care?

- A. Density of rational points (S.- van Luijk, Bogomolov-Tschinkel)
- B. Unirationality of conic bundles (Kóllar-Mella)
- C. Useful to find elliptic curves with high rank (Elkies)
- D. Shioda-Tate formula (helps understand geometry)
- E. Sphere packing (Elkies, Shioda)
- F. Error-correcting codes (S. Várilly-Alvarado Voloch)

And more....

Let k be a number field and $\pi: X \to \mathbb{P}^1$ an elliptic surface over k.

Let k be a number field and $\pi: X \to \mathbb{P}^1$ an elliptic surface over k.

Mordell-Weil: For $t \in B(k)$, $\pi^{-1}(t)(k) \cong \mathbb{Z}^{r_t} \oplus \text{Tors}_t$

Lang-Néron: For η , $\pi^{-1}(\eta)(k(B)) \cong \mathbb{Z}^r \oplus \text{Tors}$

Silverman's specialization: $r_t \ge r$ for all but finitely many $t \in B(k)$.

Conclusion

If r > 0 then X(k) is Zariski dense in X.

Let k be a number field and $\pi : X \to \mathbb{P}^1$ an elliptic surface over k. Let $\mathscr{F}(k) := \{t \in \mathbb{P}^1(k); r_t > 0\}.$

Theorem: X(k) is Zariski dense in $X \iff \#\mathscr{F} = \infty$.

Sketch of the proof:

 (\Rightarrow) Mérel's result on the uniform boundedness of torsion.

(\Leftarrow) If X(k) contained in a finite union of curves then, in particular, it is contained in a finite union of multisections and fibers. Each multisection intersects a given fiber in a finite number of points. Hence all but finitely many fibers would have rank 0.

How do we show that $\mathcal{F}(k)$ is infinite?

Let k be a number field and $\pi: X \to \mathbb{P}^1$ an elliptic surface over k.

Method A (e.g. Bogomolov-Tschinkel, S.-vanLuijk): Find a nontorsion multisection C/ks.t. $\#C(k) = \infty$.

Method B (Rohrlich):

Variation of root number. Subject to BSD and Parity conjecture

Thank you! Danke!