Arithmetic and geometry of algebraic surfaces: the place of elliptic fibrations

Cecília Salgado
Rijksuniversiteit Groningen
September 19th, 2023

Plan for today

1. Arithmetic and algebraic geometry
2. Algebraic curves
3. Geometry of surfaces
4. Arithmetic of surfaces
5. Elliptic fibrations

Arithmetic and algebraic geometry

Algebraic Geometry: set of solutions of systems of polynomial equations (over an algebraically closed field, eg. \mathbb{C}) correspond to algebraic varieties.

Arithmetic/Diophantine Geometry: solutions over arbitrary fields or rings (eg. rationals, integers).

Notation:

$X(k)$ the solutions over k (k-points)

For simplicity in the rest of the talk: $k=\mathbb{Q}$

A prominent example

Fermat's last theorem (Taylor-Wiles, 1995):
If $(x, y, z) \in \mathbb{Z}^{3}$ is such that $x^{n}+y^{n}=z^{n}$, for some integer $n \geq 3$, then $x y z=0$.

Geometry:

$C_{n}: x^{n}+y^{n}=z^{n}$ is a (plane, projective) algebraic curve of genus

$$
g=\frac{(n-1)(n-2)}{2} \geq 1
$$

\# of holes in the associated Riemann surface $C_{n}(\mathbb{C})$.

A prominent example

Fermat's last theorem redux:

Let $n \geq 3$. The projective plane curve
$C_{n}: x^{n}+y^{n}=z^{n}$ has no \mathbb{Q} - points $(x: y: z) \in \mathbb{P}^{2}(\mathbb{Q})$, with $x \cdot y \cdot z \neq 0$.

Geometry:

$C_{n}: x^{n}+y^{n}=z^{n}$ is a (plane, projective) algebraic curve of genus

$$
g=\frac{(n-1)(n-2)}{2} \geq 1
$$

\# of holes in the associated Riemann surface $C_{n}(\mathbb{C})$

Geometry determines arithmetic (of curves)

Genus/ rational points	$g=0$	$g=1$	$g>1$
$X(\mathbb{Q})=$ $(X(\mathbb{Q}) \neq \varnothing)$	$\mathbb{P}^{1}(k)$	Has a GROUP structure	finite
How/who?	Projection from a point	Euler (1750)	Faltings (1983)
Riemann surface $X(\mathbb{C})$			
Example	$x^{2}+y^{2}=z^{2}$	$x^{3}+y^{3}=z^{3}$	$x^{4}+y^{4}=z^{4}$

Geometry determines arithmetic (of curves)

Genus/ rational points	$g=0$	$g=1$	$g>1$
$X(\mathbb{Q})=$ $(X(\mathbb{Q}) \neq \varnothing)$	$\mathbb{P}^{1}(k)$	$T \oplus \mathbb{Z}^{r}$	finite
How/who?	Projection from a point	Mordell (1922)	Faltings (1983)
Riemann surface $X(\mathbb{C})$			
Example	$x^{2}+y^{2}=z^{2}$	$x^{3}+y^{3}=z^{3}$	$x^{4}+y^{4}=z^{4}$

What about surfaces?

For example, the set of solutions of

$$
x^{n}+y^{n}=z^{n}+w^{n}
$$

Surfaces

Some guiding questions

Surfaces

Some guiding questions

$$
X(k)
$$

Surfaces

Some guiding questions

Non-empty
Empty

Surfaces

Some guiding questions

Surfaces

Some guiding questions

Surfaces

Some guiding questions

Does geometry determine their arithmetic?

Surfaces

Some guiding questions

Does geometry determine their arithmetic?

The Kodaira dimension

Let K_{X} be the canonical divisor of X.
If $h^{0}\left(X, n K_{X}\right)$ does not vanish for all positive integers n, then there is a unique integer $\kappa=\kappa(X)$ with $0 \leq \kappa \leq d$ such that:
$\limsup _{n \rightarrow \infty} \frac{h^{0}\left(X, n K_{X}\right)}{n^{\kappa}}$ exists and is non-zero.
Definition: The integer $\kappa(X)$ is called the Kodaira dimension of X.
We set $\kappa(X)=-\infty$ if $h^{0}\left(X, n K_{X}\right)$ vanishes for all n.

The Kodaira dimension of a curve

$\kappa(C)=-\infty$, if $g(C)=0$
$\kappa(C)=0, \quad$ if $g(C)=1$
$\kappa(C)=1, \quad$ if $g(C)>1$

Geometry determines arithmetic (of curves)

Kodaira dim/ rational points	$\kappa=-\infty$	$\kappa=0$	$\kappa=1$
$X(\mathbb{Q})=$ $(X(\mathbb{Q}) \neq \varnothing)$	$\mathbb{P}^{1}(k)$	$T \oplus \mathbb{Z}^{r}$	finite
How/who?	Projection from a point	Mordell (1922)	Faltings (1983)
Riemann surface $X(\mathbb{C})$			
Example	$x^{2}+y^{2}=z^{2}$	$x^{3}+y^{3}=z^{3}$	$x^{4}+y^{4}=z^{4}$

Classification of algebraic surfaces (Enriques and Kodaira): divide an conquer

Kodaira dimension	Surfaces
$-\infty$	Rational or $c \times \mathbb{P}^{1}$
0	K3, Enriques, Bielliptic, Abelian
1	Honest elliptic
2	General type

Classification of algebraic surfaces (Enriques and Kodaira): divide an conquer

Kodaira dimension	Surfaces	A Fermat type equation	There is k for which X(k) dense	$X(k)$ not dense for any k
$-\infty$	Rational or $C \times \mathbb{P}^{1}$	$\begin{gathered} x^{2}+y^{2}+z^{2}=w^{2} \\ \text { or } \\ x^{3}+y^{3}+z^{3}=w^{3} \end{gathered}$	many examples	$C \times \mathbb{P}^{1}, g(C)>1$
0	K3, Enriques, Bielliptic, Abelian	$x^{4}+y^{4}=z^{4}+w^{4}$	many examples	no example
1	Honest elliptic		many examples	$\begin{gathered} E \times C \\ g(E)=1, g(C)>1 \end{gathered}$
2	General type	$\begin{aligned} x^{n}+y^{n} & =z^{n}+w^{n} \\ n & \geq 5 \end{aligned}$	no example	many examples

Table by Lucia Caporaso

Density of k-points: state of the art

- $\kappa=-\infty$: Rational surfaces admit $k-$ minimal models that are either del Pezzo surfaces or conic bundles. A lot is known (S.
-Testa- Várilly-Alvarado, S. - van Luijk) but there are still open cases!
- $\kappa=0$: Campana's conjecture: k-points are potentially dense. Known for many surfaces.
- $\kappa=1$: Admit a genus one fibration. If there is a non-torsion section then k-points form a dense set.
- $\kappa=2$: Bombieri-Lang conjecture: $k^{\prime}-$ points are not dense for any k^{\prime} / k finite extension.

Density of k-points: Techniques

Goal: generate new points from existing ones.

How?

Density of k-points: Techniques

Goal: generate new points from existing ones.

How?

- Apply automorphisms defined over the ground field (e.g. arising from the group law on an elliptic curve);

OR/AND

- Look for subvarieties that are expected to have many rational points.

Elliptic fibrations

curves to understand surfaces

Given a surface X, an elliptic fibration on X is a surjective morphism to a curve, $\pi: X \rightarrow B$, such that:

- almost all fibers are smooth curves of genus 1
- there are singular fibers
- there is a section (\Rightarrow fibres are elliptic curves!)

Elliptic fibrations

curves to understand surfaces

Given a surface X, an elliptic fibration on X is a surjective morphism to a curve, $\pi: X \rightarrow B$, such that:

- almost all fibers are smooth curves of genus 1
- there are singular fibers
- there is a section (\Rightarrow fibres are elliptic curves!)

Examples

a) A family of plane cubics: $y^{2}=x^{3}+t x+t$.

$$
X \rightarrow \mathbb{P}_{t}^{1}
$$

b) The surface described by the equations:

$$
x^{4}+y^{4}=z^{4}+w^{4} .
$$

Examples

a) A family of plane cubics: $y^{2}=x^{3}+t x+t$.

$$
X \rightarrow \mathbb{P}_{t}^{1}
$$

b) The surface described by the equations:
$z^{2}+y^{2}=t\left(x^{2}-w^{2}\right)$
$t\left(z^{2}-y^{2}\right)=x^{2}+w^{2}$.

Why do we care?

A. Density of rational points (S.- van Luijk, Bogomolov-Tschinkel)
B. Unirationality of conic bundles (Kóllar-Mella)
C. Useful to find elliptic curves with high rank (Elkies)
D. Shioda-Tate formula (helps understand geometry)
E. Sphere packing (Elkies, Shioda)
F. Error-correcting codes (S. - Várilly-Alvarado - Voloch)

And more....

Elliptic fibrations and rational points

Let k be a number field and $\pi: X \rightarrow \mathbb{P}^{1}$ an elliptic surface over k.

Elliptic fibrations and rational points

Let k be a number field and $\pi: X \rightarrow \mathbb{P}^{1}$ an elliptic surface over k.
Mordell-Weil: For $t \in B(k)$, $\pi^{-1}(t)(k) \cong \mathbb{Z}^{r_{t}} \oplus \operatorname{Tors}_{t}$

Lang-Néron: For η,

$$
\pi^{-1}(\eta)(k(B)) \cong \mathbb{Z}^{r} \oplus \text { Tors }
$$

Silverman's specialization: $r_{t} \geq r$ for all but finitely many

$t \in B(k)$.

$$
\eta=\operatorname{Spec}(k(B))
$$

Conclusion
If $r>0$ then $X(k)$ is Zariski dense in X.

Elliptic fibrations and rational points

Let k be a number field and $\pi: X \rightarrow \mathbb{P}^{1}$ an elliptic surface over k. Let $\mathscr{F}(k):=\left\{t \in \mathbb{P}^{1}(k) ; r_{t}>0\right\}$.

Theorem: $X(k)$ is Zariski dense in $X \Longleftrightarrow \# \mathscr{F}=\infty$.

Sketch of the proof:
(\Rightarrow) Mérel's result on the uniform boundedness of torsion.
(\Leftarrow) If $X(k)$ contained in a finite union of curves then, in particular, it is contained in a finite union of multisections and fibers. Each multisection intersects a given fiber in a finite number of points. Hence all but finitely many fibers would have rank 0 .

How do we show that $\mathscr{F}(k)$ is infinite?

Elliptic fibrations and rational points

Let k be a number field and $\pi: X \rightarrow \mathbb{P}^{1}$ an elliptic surface over k.
Method A (e.g. Bogomolov-Tschinkel, S.-vanLuijk): Find a nontorsion multisection C / k s.t. $\# C(k)=\infty$.

Method B (Rohrlich):
Variation of root number.
Subject to BSD and Parity conjecture

Thank you! Danke!

